- Download PDF - 

SEEFOR 2 (2): 81-93
DOI: http://dx.doi.org/10.15177/seefor.11-09
  

Preliminary communication

 

Digital Photogrammetry – State of the Art and Potential for Application in Forest Management in Croatia


Ivan Balenović 1*, Ante Seletković2, Renata Pernar 2, Hrvoje Marjanović 1, Dijana Vuletić 1, Elvis Paladinić 1, Jelena Kolić 2, Miroslav Benko 1


1 Croatian Forest Research Institute Division for Forest Management and Forestry Economics, Trnjanska cesta 35, 10000 Zagreb, Croatia
2 Faculty of Forestry, University of Zagreb, Zagreb, Department of Forest Inventory and Management, Svetošimunska 25, 10000 Zagreb, Croatia

* Corresponding author: e-mail: ivanb@sumins.hr 

Citation:
BALENOVIĆ I, SELETKOVIĆ A, PERNAR R, MARJANOVIĆ H, VULETIĆ D, PALADINIĆ E, KOLIĆ J, BENKO M 2011 Digital Photogrammetry – State of the Art and Potential for Application in Forest Management in Croatia. South-east Eur for 2 (2): 81-93. DOI: http://dx.doi.org/10.15177/seefor.11-09 


Cited by:        CrossRef        Google Scholar


Abstract

Background and Purpose: The main goal of this paper is to inform forestry community about the latest developments in digital photogrammetry, as well as to present its possible application in forest management. For this purpose, the current state of technological development of the main tools of digital photogrammetry (digital aerophotogrammetric cameras and digital photogrammetric workstations) has been presented. Furthermore, two adjusted methods of manual digital photogrammetry for application in forest management, namely: method for strata delineation (i.e. creation of forest management division), and method for measuring stand structure elements have been developed and presented here. 
Material and Methods: Research was carried out on the selected part of multi-aged, privately owned forest of ''Donja Kupčina - Pisarovina'' management unit which includes 6 compartments and 24 subcompartments and covers total area of 480 ha. After conducted aerial survey of research area, acquired digital images were processed, and digital terrain model and digital elevation model were derived. Digital aerial images of ground sample distance of 10 cm, topographical maps, digital terrain model and digital elevation model, as well as the digital photogrammetric workstations with appropriate software (PHOTOMOD, Global Mapper) were used for developing methods for strata delineation and stand structure elements estimation. Developments of both methods were carried out in the stereomodel of colour infrared digital aerial images in PHOTOMOD StereoDraw module. Additional data processing was conducted in ArcGIS 9.1 (for strata delineation) and in Global Mapper (for stand structure elements estimation) software.
Results and Conclusion: This research has showed that PHOTOMOD Lite and Global Mapper software packages in combination with the used materials (digital aerial images, digital elevation model) and digital photogrammetric workstation completely satisfy the needs for strata delineation and stand structure measurements. The PHOTOMOD software enables simple creation of projects of digital images, easy manipulation of multiple digital images, and many other features that facilitate photogrammetric measurement and photo-interpretation, but its free version PHOTOMOD Lite has limited capabilities in terms of number of images and quantity of vector data that can be processed. If digital images of high spatial resolution are used (e.g. 30 cm or better), as was the case in this research, stereo-effect experienced by the operator and the quality of photo-interpretation are very good. That enables clear determination of vegetation types and as well as single tree species, more accurate pinpointing of tree tops and more accurate delineation of tree crowns. As long as automatic procedures are not available, digital photogrammetry has to rely on manual methods. Allometric relation between variables measured with photogrammetric method and desired variables need to be developed. An attempt to address this issue, at least in part, is made within the ongoing project 'Application of digital photogrammetry in practical forest management'.

Keywords: digital photogrammetric workstation, digital aerial images, strata delineation, stand structure elements



REFERENCES

  1. DONASSY V, OLUIĆ M, TOMAŠEGOVIĆ Z 1983 Daljinska istraživanja u geoznanostima. JAZU, Zagreb, p 281-329
  2. PERNAR R, ŠELENDIĆ D 2006 Prilog povećanju interpretabilnosti aerosnimaka i satelitskih snimaka za potrebe uređivanja šuma. Glas šum pokuse 5: 467-477
  3. TOMAŠEGOVIĆ Z 1954 O pouzdanosti aerofototaksacije za neke dendrometrijske potrebe šumskog gospodarstva. Glas šum pokuse 12: 167-220
  4. TOMAŠEGOVIĆ Z 1956 Razmatranja o fotoplanu Turopoljskog luga. Sumar list 80 (5-6): 154-166
  5. TOMAŠEGOVIĆ Z 1961a Sterefotogrametrijska linearna taksacija. Sumar list 85 (1-2): 36-45
  6. TOMAŠEGOVIĆ Z 1961b Ovisnost promjera d1,3 jele i smreke o krošnji i visini stabala. Sumar list 85 (7-8): 254-261
  7. TOMAŠEGOVIĆ Z 1965 O pouzdanosti fotogrametrijskih slojnica šumskih područja. Geod list 19 (10-12): 259-304
  8. VUKELIĆ J 1984 Doprinos fotointerpretacijske analize vegetaciji istraživanih šumskih zajednica Nacionalnog parka Risnjak. Master’s thesis, Faculty of Forestry, University of Zagreb, p 81
  9. ĆURIĆ T 1986 Fotointerpretacijsko izlučivanje sastojina. Bachelor’s thesis, Faculty of Forestry, University of Zagreb, p 22
  10. BENKO M 1993 Procjena taksacijskih elemenata sastojina na infracrvenim kolornim aerosnimkama. Glas šum pokuse 29: 199-274
  11. PERNAR R 1997 Application of results of aerial photograph interpretation and geographical information system for planning in forestry. Glas šum pokuse 34: 141-149
  12. KLOBUČAR D 2004 Izlučivanje sastojina prema sklopu na digitalnom ortofotu i usporedba s terestičkim izlučivanjem. Rad Šumar Inst (39) 2: 223-230
  13. SELETKOVIĆ A, PERNAR R, BENKO M, 2006 Višefazni uzorak u inventarizaciji šumskog prostora. Rad Šumar Inst 9: 297-306
  14. LUKIĆ N 1981 Ispitivanje pouzdanosti fotointerpretacijske inventure drvnih masa šuma jele u odnosu na listu podataka dobivenu mjernom fotointerpretacijom. Sumar list 105 (3-4):  133-145
  15. KUŠAN V 1992 Procjena volumena sastojina četinjača fotointerpretacijom aerosnimaka uz pomoć prirasno-prihodnih tablica. Meh šumar 17 (3-4): 53-66
  16. KUŠAN V, KREJČI V 1993 Regresijski model za procjenu volumena sastojina hrasta lužnjaka. Rad Šumar Inst 28 (1-2): 69-77
  17. BENKO M 1995 Procjena drvne zalihe sastojine multivarijantnom analizom čimbenika mjerljivih na aerosnimkama. Dissertation, Faculty of Forestry, University of Zagreb, p 237
  18. PAVIČIĆ D 1983 Pouzdanost fotointerpretacijskog određivanja horizontalnog sklopa u sastojinama. Bachelor’s thesis, Faculty of Forestry, University of Zagreb, p 54
  19. KOSTIJAL V 1986 Korelacijski odnos uočljivog broja krošnji u stereomodelima jednodobnih šuma bukve s prsnim promjerom centralnog plošnog stabla. Master’s thesis, Faculty of Forestry, University of Zagreb, p 56
  20. PERNAR R, KLOBUČAR D, KUŠAN V 2003 The application of aerial photographs from cyclic recordings in the Republic of Croatia to forest management. Glas šum pokuse 40: 113-168
  21. PERNAR R, KLOBUČAR D 2003 Estimating stand density and condition with use of picture histograms and visual interpretation of digital orthophotos. Glas šum pokuse 40: 81-111
  22. KLOBUČAR D 2008 Primjena histograma drugoga reda u procjeni relativnog sastojinskog obrasta. Sumar list 132 (9-10): 419-429
  23. KLOBUČAR D, Pernar R 2009 Umjetne neuronske mreže u procjeni sastojinskih obrasta s cikličkih snimaka. Sumar list 133 (3-4): 145-155
  24. KALAFADŽIĆ Z, KUŠAN V 1990 Ustanovljavanje stanja šuma na velikim površinama, primjenom infracrvenih kolornih aerosnimaka. Glas šum pokuse 26: 447-459
  25. PERNAR R 1994 Način i pouzdanost određivanja oštećenosti hrasta lužnjaka (Quercus robur L.) na infracrvenim kolornim (ICK) aerosnimkama. Glas šum pokuse 31: 1-34
  26. PERNAR R, SELETKOVIĆ A, Ančić M 2007a Utvrđivanje oštećenosti šuma Spačvanskog bazena primjenom infracrvenih kolornih aerosnimaka. Sumar list 131 (7-8): 315-322
  27. PERNAR R, Ančić M, SELETKOVIĆ A 2007b Primjena ICK aerosnimaka za utvrđivanje oštećenosti šuma na području UŠP Gospić. Sumar list 131 (11-12): 507-521
  28. PERNAR R, SELETKOVIĆ A, ANČIĆ M, VEDRIŠ M, TESLAK K 2008 Assessing the health status of beech-fir forests using remote sensing methods. Period Biol 110 (2): 157-161
  29. PERNAR R,  SELETKOVIĆ A, ANČIĆ M, SUČIĆ J 2011 Značajke prostorne distribucije sušaca u bukovo-jelovoj šumi (Features of Spatial Snag Distribution in a Beech-Fir Forest). CroatFor Eng 32 (1): 313-327
  30. KLOBUČAR D, PERNAR R, LONČARIĆ S, SUBAŠIĆ M, SELETKOVIĆ A, ANČIĆ M 2010Detecting forest damage in CIR aerial photographsusing a neural network. CroatFor Eng 31 (2): 157-163
  31. KUŠAN V 1996 Pristup daljinskim istraživanjima i GIS-u u Hrvatskome šumarstvu. Sumar list 120 (3-4): 171-178
  32. BALENOVIĆ I, MARJANOVIĆ H, BENKO M 2010 Primjena aerosnimaka u uređivanju šuma u Hrvatskoj. Sumar list 134 (11-12): 623-631
  33. LAPAINE M, FRANČULA N 2001 O pojmovima analogno i digitalno. Bilt dalj istr fotoint 15-16: 135-144
  34. MAGNUSSON M, FRANSSON JES, OLSSON H 2007 Aerial photo-interpretation using Z/I DMC images for estimation of forest variables. Scand J Forest Res 22 (3): 254-266. DOI: http://dx.doi.org/10.1080/02827580701262964
  35. LINDER W 2009 Digital photoogrammetry - A practical course. Springer, Berlin, p 220. DOI: http://dx.doi.org/10.1007/978-3-540-92725-9
  36. SCHENK T 2005 Introduction to photogrammetry. Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State Universitiy, Columbus,p 95. Available at: http://gscphoto.ceegs.ohio-state.edu/courses/GeodSci410/docs/GS410 02.pdf (Accessed: 12 October 2009)
  37. CRAMER M 2005 Digital airborne cameras - status and future. In: Heipke C, Jacobsen K, Gerke M (eds) High resolution earth imaging for geospatial information. ISPRS, hanover, p 1-8
  38. CICELI T, GAJSKI D 2007 Digital large format airborne cameras. KiG (Kartografija i geoinformacije) 6 (7): 40-51
  39. SANDAU R 2010 Digital airborne camera, introduction and technology. Springer, Dordrecht, p 343. DOI: http://dx.doi.org/10.1007/978-1-4020-8878-0
  40. HINZ A, HEIER H 2000 The Z/I imaging digital camera system. Photogramm Rec 16 (96): 929-936. DOI: http://dx.doi.org/10.1111/0031-868X.00158
  41. CICELI T 2004 Primjena digitalne kamere u terestričkoj fotogrametriji. Master’s thesis, Faculty of Geodesy, University of Zagreb, p 92 
  42. TONKOVIĆ T 2006 Vexcel-Ultracam. KiG 5 (5): 116-119
  43. PETRIE G, WALKER AS 2007 Airborne digital imaging technology: a new overview. Photogramm Rec  22 (119): 203-225. DOI: http://dx.doi.org/10.1111/j.1477-9730.2007.00446.x
  44. GRUBER M, WIECHERT A 2009 UltracamXp, thenew Vexcel Imaging/Microsoft. In: Proceedingsof the American Societyfor Photogrammetry and Remote Sensing. March 2009, Baltimore, Maryland
  45. JACOBSEN K 2009 Potential of large format digital aerial cameras. Map World Forum Hyderabad, GIS Development. Available at: http://www.ipi.uni-hannover.de/uploads/tx_tkpublikationen/DigitalCameras_Jacobsen.pdf (Accessed: 15 September 2010)
  46. PETRIE G 1997 Developments in digital photogrammetric systems for topographic mapping applications. ITC Journal 2: 121-135
  47. AHMAD A 2008 Digital photogrammetry: an experience of processing aerial photograph of utm acquired using digital camera. Available at: http://eprints.utm.my/490/1/Anuar_Ahmad_fksg.pdf(Accessed: 15 April 2010)
  48. MADANI M 1996 Digital aerial triangulation – the operational comparison. In: International Archives of Photogrammetry and Remote Sensing, Vienna, 31 (part B3), 490-495
  49. WALKER AS, PETRIE G 1996 Digital photogrammetric workstations 1992-1996. In: International Archives of Photogrammetry and Remote Sensing, Vienna, 31 (part B2): 384-395
  50. RUZGIENÉ B 2007 Comparison between digital photogrammetric systems. Geodezija ir Kartografija (Geodesy and Cartography) 33 (3): 75-79
  51. HEIPKE C 2001 Digital photogrammetric workstations - a review of the state-of-the-art for topographic applications. GIM International 15 (4): 35-37
  52. LEMMENS M 2007 Productsurvey on DPW. GIM International 21 (12): 22-25
  53. LEMMENS M 2009 Product survey. Digital photogrammetric workstations. Available at: http://www.gim-international.com/productsurvey/id36-Digital_Photogrammetric_Workstations,_December.html (Accessed: 20 January 2010)
  54. BENKO M, BALENOVIĆ I 2011 Prošlost, sadašnjost i budućnost primjene metoda daljinskih istraživanja pri inventuri šuma u Hrvatskoj. Sumar list 135 (13): 272-281
  55. ANTILLA P 2002 Nonparametric estimation of stand volume using spectral and spatial features of aerial photographs and old inventory data. Can J Forest Res 32 (10): 1849-1857. DOI: http://dx.doi.org/10.1139/x02-108
  56. NÆSSET E 2002 Determination of mean tree height of forest stands by means of digital photogrammetry. Scand J Forest Res 17 (5): 446-459. DOI: http://dx.doi.org/10.1080/028275802320435469
  57. POULIOT DA, KING DJ, BELL FW, PITT DG 2002 Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens Environ 82 (2-3): 322-334. DOI: http://dx.doi.org/10.1016/S0034-4257(02)00050-0
  58. LECKIE DG, GOUGEON FA, WALSWORTH N, PARADINE D 2003 Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sens Environ 85 (3): 355-369. DOI: http://dx.doi.org/10.1016/S0034-4257(03)00013-0
  59. LECKIE DG, GOUGEON FA, TINIS S, NELSON T, BURNET CN, PARADINE D 2005 Automated tree recognition in old growth conifer stands with high resolution digital imagery. Remote Sens Environ 94 (3): 311-326. DOI: http://dx.doi.org/10.1016/j.rse.2004.10.011
  60. KORPELA I 2004 Individual tree measurements by means of digital aerial photogrammetry. Silva Fenn Monogr 3: 1-93
  61. KORPELA I, ANTILLA P 2004 Appraisal of the mean height of trees by means of image matching of digitised aerial photographs.Photogrammetric Journal of Finland 19 (1): 23-36
  62. ZAGALIKIS G, CAMERON AD, MILLER DR 2005 The application of digital photogrammetry and image analysis techniques to derive tree and stand characteristics. Can J Forest Res 35 (5): 1224-1237. DOI: http://dx.doi.org/10.1139/x05-030
  63. KE Y, QUACKENBUSH LJ 2009 Individual tree crown detection and delineation from high spatial resolution imagery using active contour and hill-climbing methods. In: Proceedings of 2009 ASPRS Annual Conference, 9-13 March 2009, Baltimore, maryland
  64. KING DJ 2000 Airborne remote sensing in forestry: sensors, analysis and applications. Forest Chron 76 (6): 25-42. DOI: http://dx.doi.org/10.5558/tfc76859-6
  65. DGU 2004 301D150 Product Specification Digital Terrain ModelCRONO GIP. The State Geodetic Administration, Zagreb, p 117
  66. RACURS 2010 PHOTOMOD Lite. Available at: http://www.racurs.ru/?page=705(Accessed: 20 October 2010) 
  67. GLOBAL MAPPER SOFTWARES 2010. Available at:  http://www.globalmapper.com/ (Accessed: 21 October 2010)
  68. RACURS 2009 PHOTOMOD 4.4. Module Montage Desktop, User Manual. Racurs, Moscow. Available at: http://www2.racurs.ru/docs/en/md.pdf (Accessed: 25 October 2010) 
  69. RACURS 2010 PHOTOMOD StereoDraw. Available at: http://www.racurs.ru/?page=555#SD (Accessed: 20 October 2010)
  70. THE Ministry of Agriculture, Forestry and Water Management 2006 Regulation on forest management. Official Gazette, Zagreb, 111
  71. THE MINISTRY OF REGIONAL DEVELOPMENT, FORESTRY AND WATER MANAGEMENT 2008 Regulation on forest management. Official Gazette, Zagreb, 141
  72. BALENOVIĆ I 2011 Applying possibility of digital Aerophotogrammetric images of different spatial resolution in forest management. Dissertation, Faculty of Forestry, University of Zagreb, p 186

 

© 2015 by the Croatian Forest Research Institute. This is an Open Access paper distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).